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Quick summary
• Novel problem setting: Clipped matrix completion.
• In empirical science, ceiling effect (= Data is clipped during observation) is

widely seen.
• On the other hand, there is matrix completion (MC) to recover matrix data.

• Goal: Recover matrix data from clipping (and missing).
• Results:

1 CMC is possible: Under sufficient condition, an exact recovery is possible.
2 How to recover: Minimize Squared hinge loss + regularization term.

(The regularization has theoretical guarantee)
3 Experiments: Robustness to ceiling effect may benefit recommender

systems!

Background
Ceiling effect� �
• In natural/social sciences, ceiling effect is widely seen [1].
• It is often modeled as a clipping phenomenon [2].
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• Right-truncated histogram: typical for ceiling effects [4].
• One explanation: A user may rate Item A with  5 and
later find better Item B. ⇒ The true rating for Item B
should be above 5, but the recorded value is still  5.� �

Low-rank matrix completion� �
• Complete a deficient matrix
(e.g., missing, noise,
discretization).

• Ex. Recommender systems
• Organize ratings of movies by users

in a matrix.
• By filling in the blanks, predict

ratings for unwatched movies.
� �

Problem setting
Problem (clipped matrix completion; CMC)� �
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8.0 13.0 6.0 9.0 4.0
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Restored M̂
• Missing and clipping (from above with threshold C).
• Goal of CMC: Recover M from Mc

Ω
and C.� �

When is it possible?
Theorem: Feasibility of CMC (informal)� �
• Message: CMC is feasible under sufficient conditions.
• Algorithm: Trace-norm minimization

arg min
X

‖X‖tr s.t.
{
PΩ\C(X) = PΩ\C(Mc

Ω
),

PC(Mc
Ω
)≤PC(X),

(1)

where Ω := {(i, j) : observed} and
C := {(i, j) ∈ Ω : Mc

i j =C}
• Assumptions:

1 The “info. loss” due to clipping is small enough (not necessarily ignorable).
2 M is low-rank.
3 M is “incoherent” (each entry holds some information of the entire matrix)
4 Elements are observed independently with high enough probability p.

• Statement: with high probability, the output of (1) is
unique and matches the true matrix M completely.� �
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How to recover?
General idea� �
• Ordinary MC (prior work): squared loss [5]

arg min
X

1
2 ∑ i j ∈ Ω (Mc

i j −Xi j)
2+R(X)

• CMC (proposed): squared hinge loss

arg min
X

1
2 ∑i j∈Ω: Mc

i j <C (Mc
i j −Xi j)

2

+ 1
2 ∑i j∈Ω: Mc

i j =C max(0,Mc
i j −Xi j)

2

+R(X)
� �

Design of regularizers� �
• Double trace-norm regularization (DTr-CMC) (proposed)

R(X) = λ1‖X‖tr+λ2‖Clip(X)‖tr Clip = min(·,C)
• Induces low-rankness in X and Clip(X).
• Optimization: (approximate) subgradient descent [6].

• Trace-norm regularization (Tr-CMC) [5]

R(X) := λ‖X‖tr ‖X‖tr = ∑
min(n1,n2)
l=1 σl (σl: l-th singular value)

• Induces low-rankness in X (cf. rank is the count of nonzero σi’s).
• Optimization: accelerated proximal gradient descent (APG) [5].

• Frobenius norm regularization (Fro-CMC) [7]

R(P,Q) := λ1‖P‖2
F+λ2‖Q‖2

F X = PQ>

• Induces low-rankness in X.
• Optimization: (approximate) alternating least squares (ALS) [7].� �

Experiments
Compared methods� �
• *-MC: Ordinary MC (squared loss).
• *-MCi: Ordinary MC (squared loss) with clipped entries ignored.� �

Synthetic data� �
• Controlled experiment with known true values.
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On non-clipped test entries
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• Result 1: The low-rank completion
principle is effective for recovering
clipped matrices.
• Proposed method recovers the matrices

with a relative error of 10−2 order.
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• Result 2: Proposed method is more robust to the clipping.
• Ordinary MC: Recovery error on non-clipped entries increased with the

clipping rate. Indicative of the disturbance of the clipped entries.� �
Challenge in experiments with real-world data� �
• “True values” for real-world data with ceiling effect are rarely

available. → Evaluations on the ability to “predict which entries
should be above threshold.”� �

Real-world data experiment 1/2� �
• Training with artificially clipped data (e.g.,  5 →  4)
• Task: classify entries into “(true rating) ≥ (threshold)” or not.
• (Baseline always predicts as “above threshold.”)

f1 score DTr-CMC Fro-CMC Fro-MC Tr-CMC Tr-MC (Baseline)
Film Trust 0.47 0.35 0.27 0.36 0.22 0.41

(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
Movielens 0.39 0.41 0.21 0.40 0.12 0.35
100K (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

• Improvement is seen by the change from -MC to -CMC.
• Proposed CMC methods give better estimates of the true values

of the clipped entries than MC counterparts.� �
Real-world data experiment 2/2� �
• Training with original real-world data (e.g.,  1 -  5).
• Task: classify entries into “(true rating) ≥ (max rating)” or not.
• (Baseline always predicts as “above threshold.”)

f1 score DTr-CMC Fro-CMC Fro-MC Tr-CMC Tr-MC (Baseline)
Film Trust 0.46 0.40 0.35 0.39 0.35 0.41

(0.01) (0.01) (0.01) (0.00) (0.01) (0.00)
Movielens 0.38 0.41 0.38 0.40 0.38 0.35
100K (0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

• Improvement is seen by the change from -MC to -CMC.
• Enhanced performance on the prediction of “high rating” by

being robust to the ceiling effect.� �

More details
Background: Matrix completion (MC)

The low-rank completion principle� �
• For a low-rank and incoherent matrix, the recovery may be

possible [8].
• Low-rank: Entries are dot products of low-dim. row/col features.
• To complete: Estimate latent vectors → Take inner products.

� �
Limitations of ordinary MC methods� �

1 Info deficit depends on the true value.
→ Existing theory does not apply.

2 Potentially large gap b/w true value and the
observed.
→ Learning is disturbed. Result of ordinary

MC from Mc
Ω
.� �

Def: Incoherence� �
• Let M = UΣΣΣV> (skinny singular value decomposition).
• Coherence µ0 := max

{n1
r µU(M), n2

r µV(M)
}

• where µU(M) := maxi∈[n1]‖Ui,·‖2 , µV(M) := max j∈[n2]‖V j,·‖2 , and
r = rank(M) .

• Joint coherence µ1 :=
√n1n2

r ‖UV>‖∞

• M is incoherent iff. µ0 and µ1 are small.� �

Detailed condition of exact recovery

Def: The information loss� �
• B := {(i, j) : Mi j <C}
• T := span

(
{uky> : k ∈ [r],y ∈ Rn2}∪{xv>k : k ∈ [r],x ∈ Rn1}

)
• (P∗(Z))i j := 1{Mi j <C}Zi j +1{Mi j =C}(Zi j)+

• ρF := supZ∈T\{O}:‖Z‖F≤‖UV>‖F

‖PTP∗(Z)−Z‖F
‖Z‖F

• ρ∞ := supZ∈T\{O}:‖Z‖∞≤‖UV>‖∞

‖PTP∗(Z)−Z‖∞

‖Z‖∞

• ρop :=
√

rµ1

(
sup Z∈T\{O}:

‖Z‖op≤
√

n1n2‖UV>‖op

‖P∗(Z)−Z‖op
‖Z‖op

)
• νB := ‖PTPBPT −PT‖op� �
Theorem: Exact recovery guarantee for CMC� �
• Assume
• ρF < 1/2,ρop < 1/4,ρ∞ < 1/2,νB < 1/2 .
• Entries are independently observed with probability p.
• n1,n2 ≥ 2, p ≥ 1/(n1n2)

• If p ≥ min
{

1,cρ max(µ1
2,µ0)r f (n1,n2)

}
is satisfied, then M̂

is unique and equal to M with probability at least 1−δ , where
• cρ = max

{
24

(1/2−ρF)
2,

8
(1/4−ρop)2,

8
(1/2−ρ∞)2,

8
(1/2−νB)2

}
• f (n1,n2) =O

(
(n1+n2)(log(n1n2))

2

n1n2

)
• δ =O

(
log(n1,n2)

n1+n2

)
(n1+n2)

−1

� �

DTr-CMC theoretical guarantee

Theorem: DTr-CMC estimation error bound� �
• Message: Even under clipping, if the assumptions are satisfied,

an accurate estimation is possible by DTr-CMC.
• DTr-CMC is a Lagrange-relaxation of the following problem with

a convex-relaxation of the objective function.
• M̂ ∈ arg min

X∈G
∑(i, j)∈Ω(Mc

i j −Clip(Xi j))
2

G =
{

X ∈ Rn1×n2 : ‖X‖2
tr ≤ β1

√
kn1n2,‖Clip(X)‖2

tr ≤ β2
√

kn1n2
}

• µ(X) = max{µU(X),µV(X)}
• Theorem: Suppose M ∈ G. Let µG = supX∈Gµ(Clip(X)).

Then ∃C0,C1 > 0 s.t. with probability at least 1−C1/(n1+n2),√
1

n1n2
‖M̂−M‖2

F

≤ ‖M−Mc‖F√
n1n2︸ ︷︷ ︸

=B1:Complexity of data

+
‖M̂−Clip(M̂)‖F√

n1n2︸ ︷︷ ︸
=B2:Complexity of hypothesis

+
‖Clip(M̂)−Clip(M)‖F√

n1n2︸ ︷︷ ︸
=B3:Estimation error

,

where
B1,B2 ≤ (

√
β1+

√
β2)k

1
4(n1n2)

−1
4,

B3 ≤

√
C0

2µG
2β2

p

(
pk(n1+n2)+ k log(n1+n2)

n1n2

)1
4

.

� �
Source code (GitHub)� �

Repo: clipped-matrix-completion-py� �

Longer paper (ArXiv)� �

arXiv:1809.04997� �


