Clipped Matrix Completion: A Remedy for Ceiling Effects
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Quick summary How to recover? More details

e Novel problem setting: Clipped matrix completion. - General idea ) _ i i
® |n empirical science, ceiling effect (= Data is clipped during observation) is ® Ordinary MC (Prior Work)3 squared loss [s) T Background. Matrix Completlon (MC)
widely seen. .1 o )
argminsY ..o (M5 —X;;)?+R(X | g i ..
® On the other hand, there is matrix completion (MC) to recover matrix data. gX 2Z”€Q( Y i)+ R(X) O X ~ The low-rank completlon prlnC|p|e ~
e Goal: Recover matrix data from clipping (and missing). e CMC (proposed): squared hinge loss e For a low-rank and incoherent matrix, the recovery may be
¢ Results: S 5 possible [g.
. o . . | | arg min EZZ-J-EQ:M%<C(M?.—X,- ) T
g EMC;S pOSS|bIe'I\;J.n(.jer. suglaentdczr.]dltloln' N exaCtl o possible. 1X ! ) | ¥ e Low-rank: Entries are dot products of low-dim. row/col features.
ow to recover: Minimize >quared hinge loss + regularization term. +2Y.. 6. e ~Mmax 0. MS —X.. - X _ _
(The regularization has theoretical guarantee) %Z;J;Q'MUC (0, L i) (’ " e [o complete: Estimate Iatent‘ ygctors — Take inner products.
©® Experiments: Robustness to ceiling effect may benefit recommender L +R(X) ) 4B e 1Eer .
| . . (3 i q; o= ij
etems - Design of regularizers \ LA
B a C kgro U n d e Double trace-norm regularization (DTr-CMC) (proposed) 5 o )
R(X) = h|Xli+ 4[| Clip(X)||i: Clip =min(-,C) - Limitations of ordinary MC methods ~
CEIIlng effect ® |nduces low-rankness in X and Clip(X).
- _ _ . o A ® Optimization: (approximate) subgradient descent [s]. ® Info deficit depends on the true value 48170/45/6.7 40
e In natural/social sciences, ceiling effect is widely seen p. e Trace-norm regularization (Tr-CMC) et p . 00316197
. . - & r- 15 — Existing theory does not apply. 45|54 /18|25 0.2
e |t is often modeled as a clipping phenomenon p. RX) = A|X[ls [X]le = £ 6, (c7: I-th singular value) | 25 56 658 K 9.7
. _ : _ | ® Potentially large gap b/w true value and the — g co 87 4>
Mowelens 100K  Film Trustp ® Induces low-rankness in X (cf. rank is the count of nonzero o;'s). observed ol - IR
12 3 4 = 4? ® Optimization: accelerated proximal gradient descent (APG) [5]. - Result of ordinary
8, 8" e Frobenius norm regularization (Fro-CMC) — Learning is disturbed. ¢
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1234 as _ ol _ ® [nduces low-rankness in X. - er: Incoherence ~
Rating Rating \ ® Optimization: (approximate) alternating least squares (ALS) [7]. ) e let M=UXV' (skinny singular value decomposition).
e Right-truncated histogram: typical for ceiling effects . e Coherence o :=max {Zu"(M),”2uv (M)}

e One explanation: A user may rate Iltem A with W5 and ® where u"(M) := maxep,,)|[|U;.||*, p"(M) := max ey, |[|V;.]|*, and

later find better Item B. = The true rating for Item B EXperl ments r = rank(M)

. : o T
K should be above 5, but the recorded value is still 5. ) C g thod e Joint coherence W := /=Z2|[UV |
i i - ~ompared methods ) e M is incoherent iff. Uy and u; are small.
- Low-rank matrix completion \ e *.MC: Ordinary MC (squared loss). - y
o Complete a deficient matrix 4 2 3 - 4 2 e *-MCi: Ordinary MC (squared loss) with clipped entries ignored./ Detailed condition of exact recovery
(e.g., missing, noise, 4 3 4 4
discretization). 4 3 4 4 3 4 : -~ Def: The information loss N
o - Synthetic data \ o
e Ex. Recommender systems o2 . . o B:={(i,j): M;; <C}
_ _ _ =g AR e Controlled experiment with known true values. - . - .
® Organize ratings of movies by users l’\\ 5 / o T :— span({uky -k € [r],y cR 2} U {ka -k € [r],x cR 1})
in 3 .m.atr.-x_ | }‘i - : - On all entries On non-clipped test entries o (P*(Z))ij - I{Mij < C}Zij‘l’ 1{Mij — (j}(Zl-j)Jr
® By filling in the blanks, predict ¥ 1 06 { .
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Problem settin 5 - LR
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0 3|6 0 3|6 10 10 -0.0/ 3.0 /6.0 ® Result 1: The low-rank completion ~ —= Fro-tht == TrllC - Theorem: Exact recovery guarantee for CMC,
462 2 0 Obs 4762 2 0 CMC40 60 20 2000 principle is effective for recovering TR frodb e Tl ® Assume
— 26 |7 MO0 — 50 60 70 _ _ ~-m Fro-MCi —a— DTr-CMC
A A Ol 6 9 | 2 @D a-rewNs clipped matrices. —e— Tr-CMC ® pr<1/2,p0p <1/4,p. <1/2,v3<1/2.
8 6|94 /M ~a 80 6.019.0|4.0 ® Proposed method recovers the matrices ® Entries are independently observed with probability p.
Low-rank M Observed MEZ Restored M with a relative error of 1072 order. ® ni,np>2, p>1/(mny) R
. . . o If p>min{l,c,max(i* Uo)rf(ni,nz)} is satisfied, then M
e Missing and clipping (from h threshol . - _— . — P " L |
issing and clipping (from above with threshold C) ® Result 2: Proposed method is more robust to the clipping. is unique and equal to M with probability at least 1 — 0, where
e Goal of CMC: Recover M from Mgz and C. ® Ordinary MC: Recovery error on non-clipped entries increased with the . B ” g g g
> g clipping rate. Indicative of the disturbance of the clipped entries. p = MR (02—pp)2 (1/4—pop)?’ (1/2—po)?’ (1/2-Vp)?
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. . . _ (n14np) (log(nym))*
« e . 2 ~ Challenge in experiments with real-world data o flm,m) =0 (Lrtfodne)
When 'S lt pOSSl ble 0 ® “True values” for real-world data with ceiling effect are rarely e 6=0 (%) (ny +ny)~!

available. — Evaluations on the ability to “predict which entries

- Theorem: Feasibility of CMC (informal) ——

o 5 - should be above threshold.” ) DTr-CMC theoretical guarantee
o |Vlessage: CMC is feasible under sufficient conditions. i
Alooritho. T R - Real-world data experiment 1/2 N
® orithm: lrace-norm minimization o _ . - i 1
& r e Training with artificially clipped data (e.g., W5 — W4) - '.I'll\l/leoremé DTZ C||V|C e.sft:}:natlont.error bt(.):cj.r:id h
Pao\c(X) = Pa\c(Mg) e Task: classify entries into “(true rating) > (threshold)” or not Foons SRR TNEET CAPPING, T ENE SsvHMPHONS Art Satenet
arg min || X||¢ s.t. < @\ \ 27 (1) | Y &) = | an accurate estimation is possible by DTr-CMC.
C . . Iy} 17
X \PC(MQ) < Pe(X), * (Baseline always predicts as “above threshold.") e DTr-CMC is a Lagrange-relaxation of the following problem with
. f; score DTr-CMC | Fro-CMC | Fro-MC | Tr-CMC | Tr-MC | (Baseline) 3 convex-relaxation of the obiective f '
- . - jective tunction.
where Q:=1(, ) Sbserved} and Film Trust 0.47 035 027 036 022 041 & | e Tl
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@ The “info. loss” due to clipping is small enough (not necessarily ignorable). 100K (0.00) (0.00) |(0.01) [(0.00) (0.00)(0.00) . U(X) B max{uU(X) UV(X)}
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©® Mis low-rank. e |mprovement is seen by the change from -MC to -CMC. Th S M ] B o (X
® M is “incoherent” (each entry holds some information of the entire matrix) > 4 CMC hods sive b _ £ | ¢ lheéorem: Suppose E_G- et UC_? = supxegH (Clip(X)).
©® Elements are observed independently with high enough probability p. ¢ Fropose methods give better estimates of the true values Then JCy,C; > 0 s.t. with probability at least 1 —C;/(n; +no),
. . . . of the clipped entries than MC counterparts.
e Statement: with high probability, the output of (1) is N PP P y \/LHI\A/I—MHI%
. . - niny
unique and matches the true matrix M completely. - Real-world data experiment 2/2 . ~ e .
\ X PETEY ) P / ) o MM M Clip(MD)r [ Clip(M) — Clip(M)|]r
e Training with original real-world data (e.g., YW1 - %5). = N N N ’
f- e Task: classify entries into “(true rating) > (max rating)” or not. —B:Complexity of data  =By:Complexity of hypothesis —B3:Estimation error
Re e ren Ces e (Baseline always predicts as “above threshold.”) where
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