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2Target audience & structure

Part 1 
For everyone.

Part 2 
For INN users.

Part 3 
For those 

interested 

in details.

Sec. ? indicates the corresponding section of our paper.

Disclaimer

Many descriptions are informal. Please see paper for precise info.
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Part 1

Part 1 
For everyone.

Part 2 
For INN users.

Part 3 
For those 

interested 

in details.

• What we did and why we did it.
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Take-home message

What did we do?

Why important?

Theoretically investigated: 

Are our INNs expressive enough?

Models without a representation 

power guarantee are hard to rely on.

What is the result? "Coupling-based INNs (CF-INNs)" are 

"universal function approximators" 

despite their restricted architectures.

"CF-INNs" can be relied on in modelling 

invertible functions and probability distributions.

Message

INNs = Invertible neural networks



CF-INN = Coupling-flow based INN.

Idea: Keep some dimensions unchanged.

5What is "coupling-based INN?"

Coupling flows

Definition (informal)

Invertible neural network (INN) is a finite composition of   

invertible affine transforms and invertible flow layers.

Sec. 2.1

[DKB14, PNRML19, KPB19] Sec. 2.1



Research question

Can CF-INNs have sufficient representation power?

Research question

Usages of CF-INNs

• Approximate distributions (normalizing flows).

Sec. 1

(Restricted function form → restricted representation power?)

μ

ν

(g1)*μ

(g2)*μ

(g3)*μ

[KD18]

[DSB17]
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• Approximate invertible maps (feature extraction & manipulation).



Short answer is yes

Can CF-INNs have sufficient representation power?

Research question

(Restricted function form → restricted representation power?)

Yes.

Answer
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Part 2

• Technically, what our results are and what they mean.

Part 1 
For everyone.

Part 2 
For INN users.

Part 3 
For those 

interested 

in details.
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What is "representation power"?

General

- ( -) universal approximator: 

the model can approximate any target 

function w.r.t. - ( -) norm on a 

compact set.

sup Lp

sup Lp

Definition (informal)

"Representation power" = Universal approximation property

Approximation Target  𝒟2 Sec. 3.1

Sec. 2.2

𝒟
2

f

g

K

< ε

Fairly large set of smooth invertible maps.

...and more

[C89,HSW89]

{Diffeo on ℝd}
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Result 1: CF-INNs are universal

Theorem (informal)

Application

- ( -) universal approximator for  

 - ( -) universal approximator for .

sup Lp
𝒮

∞
c

⟹ sup Lp
𝒟

2

We used the result to demonstrate that 

• Sum-of-squares polynomial flow (SoS-flow) 

• Deep sigmoidal flow (DSF; aka. NAF)

Sec. 3.1, Theorem 1

yield -universal CF-INNs for  (stronger than in                       ).sup 𝒟
2

[JSY19]

[JSY19, HKLC18]

[HKLC18]
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𝒮
∞
c

Specific

General

𝒟
2



Sec. 3.1

𝒮
∞
c

Specific

General
𝒟

2

-univ. for sup 𝒮
∞
c -univ. for sup 𝒟

2

-univ. for Lp
𝒮

∞
c -univ. for Lp

𝒟
2

⟹

⟹

⟹

⟹

You getYou show

 (Advanced) How Result 1 can be used
11

𝒮
∞
c := {τ : compactly supported τ(x, y) = (x, u(x, y))}



Affine-coupling flows (ACFs)

Definition (informal)

(Single-coordinate) Affine coupling flows (ACFs) is a special 

CF architecture:

Ψs,t(x, y) := (x, es(x)y + t(x))

Sec. 2.1

Why are ACFs interesting?

• Popular in applications 

- Generative modeling [DSB17,KD18,OLB+18,KLSKY19,ZMWN19] 

- Probabilistic inference [BM19,WSB19,LW17,AKRK19] 

- Semi-supervised learning [IKFW20] 

- Transfer learning [TSS20], etc. 

• Simplest architecture 

→ Theoretical guarantee for ACFs apply to more complex CFs.

[DKB14,DSB17,KD18]

[DSB17]
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Result 2: ACF-INN is -/dist. universalLp

Theorem (informal)

Implication

• Useful criterion: "if my CF architecture contains ACFs (as special 

cases), then they are also ( -/dist.) universal." 

• Affirmative answer to an unsolved conjecture.

Lp

Sec. 3.2, Theorems 2, 3
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ACF-INN is an -universal approximator for .Lp
𝒟

2

(As a result,) ACF-INN is a distributional universal approximator.

μ
ν

(g1)*μ

(g2)*μ

(g3)*μ

Definition (informal)

A model is a distributional universal approximator if it can 

transform one distribution arbitrarily close to any distribution.

   

 (weak convergence).

(gn)*μ ⟶
n→∞

ν

Sec. 2.2



Part 3

Part 1 
For everyone.

Part 2 
For INN users.

Part 3 
For those 

interested 

in details.
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• How Result 1 was obtained.



Proof outline of Result 1

  (flow endpoints)∃h1 ∘ h2 ∘ ⋯

  (nearly s)∃g1 ∘ g2 ∘ ⋯ Id

   (permutations & )τ1 ∘ σ1 ∘ ⋯ 𝒮
∞
c

  (  & compactly supported -diffeomorphism)∃W ∘ h Aff C2

:  target,   :  compactf ∈ 𝒟
2 K ⊂ Uf

f |
K

structure theorem of diffeomorphism group

Decompose    into 

simpler mappings

f |
K
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Sec. 4
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Take-home message

What did we do?

Why important?

Theoretically investigated: 

Are our INNs expressive enough?

Models without a representation 

power guarantee are hard to rely on.

What is the result? "Coupling-based INNs (CF-INNs)" are 

"universal function approximators" 

despite their restricted architectures.

"CF-INNs" can be relied on in modelling 

invertible functions and probability distributions.

Message
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